EVALUA	CIÓN DIARIA (10mo Grado)	
Nombre del estudiante:		
Criterio de evaluación	Técnica de evaluación	Puntaje Recibido
Aplica las condiciones de equilibrio en la resolución de problema.	 Ejercicios propuestos del libro 	3 pts
2. Establece diferencias entre los tipos de equilibrio	 Organizador gráfico 	3 pts
3. Encuentra el centro de gravedad de distintos cuerpos.	 Ejercicios propuestos del libro 	3 pts
4. Determina la distancia y desplazamiento de un móvil.	 Ejercicios propuestos del libro 	3 pts
5. Calcula la velocidad y aceleración de un móvil.	 Ejercicios propuestos del libro 	3 pts
6. Establece diferencias entre los distintos tipos de movimientos rectilíneos	 Organizador gráfico 	3 pts
7. Aplica las ecuaciones del movimiento en la solución de distintas situaciones	Ejercicios propuestos del libro	3 pts
8. Comprende el principio de independencia del movimiento.	 Pregunta de investigación 	3 pts

Ejercicios libro

Ejercicios propuestos libro

propuestos

del

del

3 pts

3 pts

9. Aplica las ecuaciones del lanzamiento

10. Aplica las ecuaciones del lanzamiento

horizontal de un proyectil.

con un ángulo de inclinación.